Simulation of the substrate cavity dynamics of quercetinase.

نویسندگان

  • M van den Bosch
  • M Swart
  • W F van Gunsteren
  • Gerard W Canters
چکیده

Molecular dynamics (MD) simulations have been performed on quercetin 2,3 dioxygenase (2,3QD) to study the mobility and flexibility of the substrate cavity. 2,3QD is the only firmly established Cu-containing dioxygenase known so far. It catalyses the breakage of the O-heterocycle of flavonols. The substrates occupy a shallow and overall hydrophobic cavity proximal to the metal centre of the homo-dimeric enzyme. The linker connecting the C-terminal and N-terminal domains in the monomer is partly disordered in the crystal structure and part of it forms a flexible lid at the entrance of the substrate cavity. This loop has been tentatively assigned a role in the enzyme mechanism: it helps lock the substrate into place. The dynamics of this loop has been investigated by MD simulation. The initial coordinates were taken from the crystal structure of 2,3QD in the presence of the substrate kaempferol (KMP). After equilibration and simulation over 7.2ns the substrate was removed and another equilibration and simulation of 7.2ns was performed. The results show that the structures of the free enzyme as well as of the enzyme-substrate complex are stable in MD simulation. The linker shows strongly enhanced mobility in the loop region that is close to the entrance to the substrate cavity (residues 154-169). Movement of the loop takes place on a timescale of 5-10ns. To confirm the conclusions about the loop dynamics drawn from the 7.2ns simulation, the simulation was extended with another 8ns. When substrate binds into the cavity the loop orders remarkably, although mobility is retained by residues 155-158. Some regions of the loop (residues 154-160 and 164-176) move over a considerable distance and approach the substrate closely, reinforcing the idea that they lock the substrate in the substrate cavity. The enthalpic component of the interaction of the loop with the protein and the KMP appears to favour the locking of the substrate. Two water molecules were found immobilised in the cavity, one of which exhibited rotation on the picosecond timescale. When the substrate is removed, the empty cavity fills up with water within 200ps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation of Al Energetic Nano Cluster Impact (ECI) onto the Surface

On the atomic scale, Molecular Dynamic (MD) Simulation of Nano Al cluster impact on Al (100) substrate surface has been carried out for energies of 1-20 eV/atom to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature Tmax  and...

متن کامل

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

متن کامل

Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition

The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...

متن کامل

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

متن کامل

Combined mixed convection and radiation simulation of inclined lid driven cavity

This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 344 3  شماره 

صفحات  -

تاریخ انتشار 2004